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ABSTRACT Efficient agricultural production increasingly relies on advanced technologies to address the challenges of
sustainability, scalability, and cost-effectiveness. This paper investigates the application of 5G-Advanced networks as a
transformative enabler for modern agriculture, offering significant efficiency and cost advantages over traditional wireless
sensor networks. By leveraging cutting-edge technologies such as loT, Multi-access Edge Computing, and Atrtificial
Intelligence/Machine Learning/Deep Learning, this applied research study introduces an innovative framework that shifts
actuation decisions from user equipment to the edge, enhancing scalability and simplifying device design. The proposed
framework integrates drone-supported intelligent robotics with loT-driven edge computing, tailored to the unique demands of
rural agricultural areas. Case studies from an award-winning TM-Forum catalyst project validate the framework’s efficacy in
architecture modeling, focusing on drone-assisted 5G networks, advanced orchestration, network slicing, and ultralow-
latency communication. These case studies emphasize precision and scalability in critical agricultural operations such as
weeding, irrigation, harvesting, crop, animal and storage monitoring. The findings underscore the potential of 5G-Advanced
networks to revolutionize agriculture by enabling precise, efficient, and sustainable practices. This approach addresses
diverse system requirements and offers a robust solution for future-ready agricultural technologies, paving the way for a
scalable and resilient agricultural ecosystem.

KEYWORDS 5G-Advanced network connectivity, drones/UAVs, edge computing, intelligent robotics, loT
sensors, network slicing, real-time inference, ultralow latency.

1. INTRODUCTION

To address crop or livestock challenges effectively
rather than merely detecting issues, it is essential to
integrate artificial intelligence (Al) algorithms and
robotics to enable real-time system operations. The
implementation of 5G technology is pivotal in facilitating
the high-speed connectivity and low-latency
communication necessary for such advanced,
responsive agricultural systems.

Achieving productivity and sustainability in agriculture
is often hindered by the prohibitive costs of advanced
technologies for smaller farms. Modern agriculture is
characterized by multifaceted challenges that impact
both farmers and technology providers. From the
perspective of farmers, critical issues include labor
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shortages, lack of technical skills, soil degradation,
water limitations, crop and livestock losses, and the
increasing demand for resilient plant and animal
species. Simultaneously, communication service
providers (CSP’s), including telecommunications and
technology companies, face significant obstacles such
as limited rural mobile network coverage, the digital
divide, challenging agricultural environments, and
fragmented data infrastructures. These barriers
collectively impede the deployment of transformative
solutions for the agricultural sector.

The emergence of 5G technology represents a
transformative step in the digitization of agriculture,
enabling tailored solutions that address the unique
operational goals of farmers. This transition is further
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amplified by the “5G-Advanced” technology, the newest
release of 5G (some other papers call it “Beyond 5G”),
which integrates Al-driven functionalities into 5G radio
access networks, core networks, and operational
frameworks. Building upon our prior research [1], which
explored the convergence of 5G private networks, edge
computing, machine learning (ML), and robotic
automation to tackle agricultural challenges, this paper
extends these findings. It reviews the literature,
explores the advanced capabilities of 5G-A, adds new
use cases and deals with a comprehensive analysis of
service orchestration, intent-driven order management
and network slicing (NS), adding new results and a
discussion on adaptability on scalability issues.

In particular, this work focuses on high-demand
agricultural applications that necessitate extreme
technical specifications, such as high bandwidth
demand in uplink, ultra-low latency for fast inferencing
and dense sensor networks. Furthermore, a detailed
description is presented for the deployment of a chain
of drones to extend 5G coverage across agricultural
areas with no public availability, illustrating the potential
of this framework to address technical and operational
challenges in rural settings.

The remainder of this paper is structured as follows:
Section 2 provides a concise review of the relevant
literature. Section 3 outlines our proposed solution
blueprint, while Section 4 discusses selected use cases
spanning crop, food, and animal life cycles. Section 5
examines the solution implementation from the
perspectives of both farmers and service providers in a
structured five-step approach. Subsequently, Section 6
presents the results and discussion, and Section 7
concludes the paper by summarizing the key findings
and insights.

2. SHORT REVIEW OF THE CURRENT
LITERATURE

Challenges in agriculture are exacerbated by the
remote nature of farming locations, limited access to
technology, labor shortages, and societal perceptions
of farming, as noted in [2]. The authors provide an
overview of smart farming, including use cases
involving autonomous robots and sensors, but relying
exclusively on a poor internet connectivity. They identify
the rapid growth of these technologies as a challenge
due to the potential for increased e-waste from frequent
hardware upgrades. Complexities of optimizing large-
scale decision-making remain unresolved.

Research in [3] highlights an loT-based architecture
framework (from 2019) tailored for the agri-food sector,
encompassing a coherent set of architectural
viewpoints and comprehensive guidelines. This
framework was applied to 19 diverse use cases
spanning arable farming, dairy production, fruit and
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vegetable cultivation, and meat supply chains. lts
implementation enabled consistent, timely, and
structured modeling of these use cases, aligning with
the large-scale industrial objectives of the European
IoF2020 project. However, the study's primary
weakness lies in its lack of concrete reference
architectures and insufficient attention to real-time
communication functionalities, such as immediate
machine control via advanced network interfaces.

The article in [4] presents a detailed survey of state-
of-the-art loT advancements in agriculture from 2019. It
explores agricultural network architectures, platforms,
and topologies that provide access to loT backbones,
aiding farmers in increasing crop yields. The study also
offers an extensive review of emerging IloT
applications, devices, sensors, communication
protocols, and cutting-edge innovations tailored for
agriculture. Instead, the paper in [5] from 2022
investigates the tools and equipment used in
applications of wireless sensors in loT agriculture, and
the anticipated challenges faced when merging
technology with conventional farming activities. The
primary contribution of the work in [6] (from 2023) is the
development of an Al and loT framework tailored for
smart and sustainable agriculture. This framework
addresses challenges arising from the fragmented
nature of farming production systems, and aims to
advance solutions that resolve inefficiencies and
improve coherence across agricultural processes,
thereby supporting sustainable and innovative farming
practices.

The following four articles each explore distinct
aspects of smart agriculture, emphasizing the
transformative role of Al and loT technologies in
improving efficiency and sustainability in farming
practices. Article [7] provides a systematic review of ML
applications in agriculture, highlighting their use in soil
parameter prediction, disease detection, crop quality
assessment, and livestock monitoring. The review
paper [8] focuses on artificial intelligence in agriculture,
surveying AI/ML methods such as expert systems,
image processing, and robotics, while discussing their
role in enhancing productivity and sustainability. Article
[9] emphasizes the potential of deep learning (DL) in
agriculture, reviewing 120 studies that cover
applications like disease detection, plant classification,
and smart irrigation. Article [10] specifically addresses
deep-learning-based object counting in agriculture,
analyzing recent advancements, datasets, and
methodologies.

Five years ago, the studies in [11] and [12]
emphasized the integration of loT and wireless sensor
networks as essential for smart agriculture, utilizing
technologies such as ZigBee, WiFi, SigFox, and
LoRaWAN for non-real-time data collection in
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applications like irrigation, soil monitoring, pest control.

Table 1
Different wireless communication technologies and their characteristics

Parameters ZigBee WiFi NB-loT LoRa (PHY+WAN) SigFox
Standard IEEE 802.15.4 IEEE 802.11a/b/g/in  3GPP rel. 13 ITU-T Y.4480 IEEE 802.15.4g

868/915 MHz and 2.4 GHz 868-915 MHz 868/923 MHz 868/915 MHz
Frequency band 2.4 GHz (free) (free) (licenced) (free) (free)

160-200 kbps (UL),

Data rate 20, 40 and 250 kbps  11-54 and 150 Mbps  160-250 kbps (DL) 250 bps - 22 kbps 100 bps
Latency 30 ms 50 ms 1s ~1-3s ~2-8s
Max range (distance) 100 m 100 m 1-25 km 15 km 10 km
Network size 65,000 nodes 32 nodes 1,000 nodes 10,000 nodes /BS 1,000,000 nodes /BS

point-to-point, tree,
Network topology star, mesh point-to-hub cellular system star-of-stars star

LoS between power consumption,  does not support the low very low
Limitations sensors and agent long access time handover data rate data rates

The review in [13] adds Narrowband loT (NB-1oT) to
the above list, and validates communication times (see
Table 1). Field tests and analysis reveal that ZigBee is
most effective for monitoring in facility agriculture,
whereas LoRa and NB-loT are better suited for field
agriculture scenarios. A recent study from 2023
presented in [14] investigates the primary applications
of loT and unmanned aerial vehicles (UAVs) in smart
farming, with an emphasis on network functionalities
and connectivity requirements. It provides a distance-
based classification of communication technologies
employed in loT systems. To address connectivity
limitations, the paper evaluates meshed LoRa WAN
gateways as a solution to connectivity challenges.

Instead, the authors in [15] emphasize the pivotal
role of cellular technologies in enabling connectivity for
loT-based sensors and smart farming machinery
across expansive agricultural fields, where short-range
communication proves inadequate. Future agricultural
machinery, such as UAVs, is expected to leverage
cellular networks for real-time communication during
operations over large areas. The focus is increasingly
shiftng toward advanced technologies such as
standalone 5G and 5G-Advanced, which are poised to
replace legacy wireless sensor networks, ensuring
continuous connectivity for smart farming systems.
Similarly, the studies presented in [16] and [17] review
the advancements of 5G loT and Big Data in smart
agriculture, providing insights into its development,
architecture, enabling technologies, and application
scenarios. They also discuss practical implementations,
highlight the transformative impact of 5G on agricultural
practices, and addresses associated key technologies,
challenges, and scientific problems.

Nevertheless, the aforementioned studies lack
comprehensive, actionable frameworks for effectively
integrating these technologies into scalable and
practical agricultural solutions.
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The current landscape reveals additional barriers,
such as:

« data collection practices: inconsistent integration of
IoT sensors limit the accuracy and usability of
agricultural data;

« limited robotic adoption: agricultural robotics show
promise but remain in early stages, with high costs
limiting use, especially for smaller farms;

« connectivity challenges: limited rural 5G availability
prevents the implementation of advanced solutions that
rely on high-speed, low-latency networks;

« environmental impacts: harsh conditions like
extreme weather, dust and debris reduce loT and
autonomous system reliability;

+ insufficient data processing: a lack of edge
computing infrastructure in rural areas delays real-time
processing and actionable insights.

Related to this last point, the article [18] explores the
integration of Multi-Access Edge Computing (MEC) into
mobile network architectures, highlights MEC enablers
and network slicing, reviews optimization approaches
for MEC resources and QoS parameters, and proposes
an architectural framework. The paper [19] reviews the
integration of MEC and NS for efficient resource
allocation, examines their role in 5G-Advanced systems
and identifies current challenges. Edge computing,
when integrated with 5G, satellite imaging [20], Al and
loT, offer transformative potential for agriculture.
However, these advancements require robust rural
connectivity, ruggedized equipment, and scalable
architectures to overcome existing barriers.

Finally, the article in [21] introduces the scope of
Agriculture 5.0, detailing the key features and
technologies anticipated in 6G-loT communication
systems. It emphasizes the critical role of these
emerging technologies in advancing smart agriculture
and concludes with an exploration of future challenges
and opportunities in the field.
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Figure 1. High level solution: 5G-drone/MEC deployment for smart agriculture (potential CSP offering to farmers)

3. ASCALABLE ARCHITECTURE

Our goal is to create a unified reference architecture
tailored for smart agricultural use cases, leveraging 5G-
Advanced, private networks, drones, cameras,
agricultural robots, sensor networks, edge computing,
cloud computing, AI/ML/DL, computer vision, satellite
imagery, weather forecast, historical data sets and
marketplaces.

This framework addresses key challenges such as
enabling farmers to access Al-driven technology
remotely, scaling Al solutions for larger farms, and
providing outcome-based recommendations by
integrating historical and real-time data. Real-time
insights will improve in-season decision-making for
crop productivity and animal health, while drones and
robotic systems, enhanced by Al, optimize operational
efficiency (see Fig.1).

A scalable architecture enables the farmer to
leverage cutting-edge Al  and 5G-Advanced
technologies  to have intent-based  farming
management tools. Emerging technologies such as
generative Al can be also used to enhance context and
usability to capture intent and provide real-time
feedback for the farmer.

Farmers can utilize an enterprise portal to access,
purchase, and manage various agricultural use case
services. Through the chatbot or direct communication,
farmers can express their needs, leading to the
preparation and loading of customized offers in the
operator portal. The farmer can then conveniently order
and manage their assets via this portal. Upon logging
in, the dashboard serves as the starting point,
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displaying tailored offers prioritized through a smart
offering mechanism. An automated infrastructure offers
real-time data, featuring fertility maps, weed/crop data
sets, sensor feeds, and productivity reports, among
others.

loT sensors provide critical data on soil moisture,
temperature, rainfall, and other environmental
variables, which can be easily combined with global
meteorological data and weather forecast, essential for
precision agriculture. Satellite imaging provides insights
into vegetation growth at the whole farm area, erosion,
calamities, deforestation, CO:2 emissions, provides
historical input for fertility maps, thus offering a holistic
view of agricultural landscapes.

Cloud-native platforms and open APIs allow for a
unified partner eco-system. The data hub serves as a
versatile API platform designed to aggregate,
normalize, and contextualize agricultural datasets from
multiple providers. It supports a wide range of data
types, including diverse crop data, weed data, sensor
data, satellite imagery, and drone-captured images,
enabling seamless integration and analysis. Built with
extensibility in mind, the data hub ensures adaptability
to evolving agricultural data needs.

Drones or UAVs, play a pivotal role in extending 5G
coverage in agricultural and remote areas while
performing critical tasks such as monitoring livestock,
assessing  biodiversity, detecting deforestation,
identifying weeds, analyzing crop growth, and enabling
remote spraying. Various types of agricultural drones
are categorized in [22] and [23], including harvesting,
spraying, conventional, mapping, and sensing UAVs.
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However, these classifications lack a focus on
addressing coverage issues.

To address this gap, we propose specific criteria that
must be satisfied to develop an effective 5G coverage
enhancement solution using drones tailored to
agricultural applications. These criteria aim to ensure
robust connectivity, operational efficiency, and
scalability in supporting the diverse demands of
modern agriculture:

* Limited coverage area: Providing 5G coverage
using millimeter-wave technology in agricultural
areas is challenging due to the short range of
small cells (usually up to 500 meters), leading to
higher deployment costs.

* Drone-based base stations: Drones equipped
with 5G base stations can act as mobile
coverage units, forming a chain to provide
extended connectivity or landing in preassigned
areas for targeted coverage during specific
agricultural activities.

« Airborne coverage: For some agriculture use
cases, drones can provide on-demand, flexible
5G coverage while airborne. Line-of-sight
communication with fixed base stations ensures
reliable backhaul, supporting latency-sensitive
applications like real-time livestock monitoring or
autonomous weeding or harvesting operations.

« Dynamic deployment for cost efficiency: Since
coverage is needed only during specific periods
(e.g., weeding, harvesting, crop health
monitoring), drones can be redeployed to
neighboring farms, enabling resource sharing
and cost reductions across territories.

«  High-throughput and low-latency applications:
5G-enabled drones can support bandwidth-
intensive applications, such as real-time video
streaming for animal or crop health analysis,
remote equipment control (weeding, harvesting).

* Integration with loT ecosystems: 5G drones can
act as mobile hubs, connecting sensors and loT
devices deployed across farms, facilitating tasks
like soil moisture analysis or smart irrigation.

* Al-driven drone management: Combining 5G
with Al technologies enables intelligent drone
management, such as automated path planning,
weed detection, intelligent spraying, thus
ensuring sustainability and cost-effectiveness.

« Energy optimization: Energy-efficient drone
operations can extend their service duration,
such as implementing energy-saving modes
during idle times or solar-powered drones to
enhance sustainability.

« Extended operations:  Tethered  drones,
connected to a ground station for continuous
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power supply and backhaul communication, can
provide long-duration coverage with minimal
downtime, albeit at the cost of reduced mobility.

*  Multi-drone coordination: Multiple drones can be
coordinated to provide uninterrupted service by
rotating active drones and recharging others,
effectively overcoming flight time limitations.

» Support for emergency connectivity: Drones
equipped with 5G can also provide temporary
connectivity during emergencies, such as natural
disasters or outages, ensuring uninterrupted
communication and critical services.

These enhanced functionalities make 5G-enabled
drones a transformative solution for delivering
connectivity and enabling advanced digital applications
in agricultural settings.

Efforts to create seamless technological experiences
for farmers are further complicated by integration
challenges. These arise from multiple standards-
defining organizations (e.g., 3GPP, ETSI, GSMA, TM
Forum), which result in varied protocols and
frameworks; the proliferation of open-source initiatives
with inconsistent compatibility; diverse third-party data
services that are cumbersome to integrate; and
variability in agricultural equipment interfaces, which
hampers interoperability. The coexistence of multiple
cloud platforms also creates integration difficulties,
delaying the rollout of innovative services and revenue-
generating opportunities. A holistic strategy is essential
to overcome these integration challenges and unlock
the full potential of modern agricultural technologies.

Our blueprint allows for the deployment of all these
advanced equipment on the farm, thus optimizing the
farmer‘s time, reducing labor cost and helping locally
and globally with the UN sustainability goals [24], [25].

4. SELECTED SMART USE CASES

The following farming use cases are examples of the
type of services enabled by the blueprint that the
farmer can purchase and use. They cover the different
aspects of crop and food cycle management, as well as
animal health management.

4.1. Smart Weeding

Earlier studies in [26], [27], [28], [29], [30], [31]
focused on automating weed control by improving real-
time weed identification using different algorithms and
optimizing the mechanical design of the weeding robot.
The proposed crop-weed classification systems may be
of different nature, applicable for different crops, but
they demonstrate robust pixel-wise labeling of crops
and weeds (include spatial information from image
sequences).
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Table 2
Requirements for selected use cases and the proposed solutions

Selected Use
Cases:

smart weeding,
smart harvesting

smart irrigation,
water management

crop health monitoring,
animal health monitoring

Automatic robots (UE) + HD cams
High velocity (5 m/s), large data UL
Ultralow latency UE<->MEC:10 ms
Al/ML for classifying crops (form,
size, color)

AI/ML for classifying weeds (form,
size, color)

Satellite / drone imagery (weed
map, crop growth), GPS navigation
Closed-loop operation in

real-time (< 200 ms)

Requirements:

5G-A mmW (private, on drones)
& cloud, MEC + CDC + Al/ML &
URLLC + eMBB slice, asym. up/dw

CDC: Central Data Computing
eMBB: enhanced Mobile
Broadband

Solution Proposal:

Abbreviations:

Massive nr. of sensors (temp, humid)
High range (~20 km)

Low energy, easy installation

Low bandwidth need UE <-> CDC
Smart irrigation equip (mob vs. fixed)
Al/ML for smart irrig. algo’s (@CDC)
Satellite images with soil types &
growth (nDVI),

Weather forecast

Field maps (variable irrigation zones)
non-real-time decision (> 100 s)

LTE Cat 4, NB-loT, LoRaWAN or 5G
eRedCap 600-900 MHz & cloud,
CDC + Al/ML & mMTC slice, sym.

HD cameras at selected locations on
the farm

HD cameras on drones for outdoor
Coverage extension with chain of
drones

High BW need uplink UE €-> MEC
AI/ML/DL, computer vision algos
(@MEC)

GPS navigation

Closed-loop operation in
near-real-time (~1s)

5G-A mmW (private, on drones)
& cloud, MEC + CDC + Al/ML/DL
& eMBB slice, asym. up/dw

5G-A mmW: millimeter Wave
URLLC: ultra-Reliable Low Latency
Communication

5G eRedCap: e Reduced Capability
mMTC: massive Machine Type
Communication

In contrast, we propose transitioning decision-making
intelligence to the network edge via 5G-A technology to
reduce costs and improve the robustness of weeding
robots. This approach enables the deployment of more
advanced computer vision and machine learning
algorithms, with inference results transmitted in real-
time back to the robots through the same
communication link. We implemented our approach.

In our first scenario, a smart robotic weeder connects
to an edge server via 5G-A, enabling weed
identification and targeted spraying as it moves at a
constant speed along the seedbed. AI/ML algorithms
control the process, with input from a camera mounted
on the automatic weeder. Machine learning classifies,
detects, and segments the objects to be detected by
describing data features and extracting useful
information from them. The system performs output
actions such as spraying pesticide, physically
extracting weeds, or using thermal methods. Key
requirements include extremely low latency and high
uplink throughput for 5G-A connectivity, as well as real-
time AI/ML decision-making and control at the MEC. A
preliminary training phase using relevant weed data
was essential. Additional requirements for this use case
are detailed in column one of Table 2 (multiple use
cases may have the same requirements). Our
approach significantly enhances efficiency while
reducing the dependency on vulnerable hardware,
such as GPUs on the weeder. The advent of 5G
technology facilitates innovative operational schemes
for robotics, allowing robots to execute a substantial
portion of their tasks autonomously while delegating
complex decision-making processes to the edge
server.
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In our second scenario, a specialized 5G-drone
captures orthographic images from an altitude of 10
meters to detect weeds in a designated area prior to
seeding, similarly, as in [32] and [33]. These images
are transmitted in real-time to the edge server, where
an Al/ML process identifies weed-infested micro-zones.
The server then generates a file specifying the weed
positions, which is sent back to the specialized drone.
This drone subsequently applies a selected pesticide
spraying method during its flight, ensuring precise and
efficient weed management.

4.2. Crop Health Monitoring

Crop health monitoring, as demonstrated in [34] and
[35], leverages drone-acquired images to assess plant
health throughout growth stages using advanced Al-
based semantic segmentation models such as U-Net
and Explainable Al. This facilitates timely and
appropriate interventions by farmers. In our catalyst
example [25], a 5G-drone captures high-resolution
images of potato fields from a height of 10 meters,
which are then immediately pre-processed at the edge
server and integrated into the farm management
system. This technology effectively identifies stressed
plants, optimizes resource use, aids in harvest
scheduling, and is adaptable to other crops and
environments.

Computer vision technologies enhance agricultural
practices by analyzing leaf size, stem length, coloration,
curvature, spotting, and tearing. When an ML algorithm
detects anomalies, it triggers an alert on the monitoring
dashboard. A 5G-drone can then be sent out for
adequate actions. These advancements reduce labor-
intensive tasks and time-consuming processes.
Additionally, visual sensing and image recognition
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technologies enable tracking of crop health, monitoring
maturity, and predicting yields [36], as well as the
automatic detection of plant diseases and pests.

4.3. Smart Irrigation and Water Management

Smart irrigation systems harness the capabilities of
5G, loT networks, soil moisture sensors, weather
forecasts, Al/ML, and advanced irrigation equipment to
optimize water usage for crops [37]. These systems
analyze soil and weather data to develop predictive soll
humidity models, which then activate precise control
algorithms tailored to specific crop requirements. By
ensuring optimal moisture levels with minimal water
consumption, this approach achieves remarkable water
efficiency [38]. The methodology adapts seamlessly to
varying rain conditions, air humidity, weather patterns,
crop types, and soil compositions. Its successful
application in tomato fields, notably in Spain [39] and
Ethiopia [40], demonstrates how technological
innovation can address global water management
challenges while promoting environmental
sustainability.

To function effectively, cloud-based Al-controlled
irrigation equipment requires various inputs, including
data from soil, moisture, and temperature sensors;
weather forecasts; crop and soil type information; and
satellite or drone imagery of the fields. Using this data,
the system can precisely activate irrigation
mechanisms for the required duration and specific
areas of the field, ensuring targeted water delivery.

The 5G-A connectivity is not mandatory for this use
case, as there are many alternative wireless
technologies (see Table 1), but can be used optionally
in order to have just one unified technology, offering
low-throughput connections, extended coverage for
large distances using lower frequencies (600-900
MHz), and support for a massive number of sensors.
While decision-making and control are Al-driven, they
do not require real-time processing, which further
supports scalability and resource efficiency.

The water management features of our system
extend beyond irrigation control. By analyzing
vegetation and water indices derived from satellite
imagery, the system evaluates overall farm health. It
provides actionable recommendations for crop
placement and sensor deployment, generates soil
moisture maps through integrated satellite and sensor
data, and applies Al/ML models to these datasets to
extract valuable insights. Ultimately, these insights
inform irrigation strategies tailored to specific crops and
environmental conditions, exemplifying the
transformative potential of smart irrigation systems in
global agriculture.

4.4. Smart Harvesting
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Smart harvesting enables precise and efficient fruit or
vegetable collection, ensuring optimal ripeness and
quality, often during nighttime when conditions are ideal
for harvesting [41], [42], [43]. Governed by AI/ML
algorithms at the edge server, the system uses input
from cameras on the harvester or 5G-enabled drones
to gather real-time data. This allows the Al to identify
and pick only ripe fruit while ensuring bruise-free
harvesting, particularly for delicate crops like
strawberries, spinach and lettuce, which require careful
handling and timely collection. Detailed technical
requirements for smart harvesting are outlined in Table
1. Not surprisingly, the connectivity requirements are
very similar to those for smart weeding.

The process incorporates advanced features such as
real-time ripeness evaluation and obstacle detection in
crops like wheat, along with low-latency response
mechanisms that optimize harvesting efficiency. The
proposed solution also offers high harvesting capacity,
especially important for time-sensitive crops like
strawberries, and can operate up to 20 hours daily, with
nighttime automation enhancing productivity.

The system may utilize 3D imaging technology to
capture detailed data on fruits, vegetables, and plants,
feeding Al models deployed at the network edge. Once
the AI/ML/DL at the edge server determines that a fruit
is ripe, it sends a real-time signal to the harvester to
execute the picking action precisely. The system relies
on 5G connectivity for ultra-low latency, high uplink
throughput, and real-time Al decision-making on MEC,
ensuring efficiency, precision, robustness, and
scalability in modern agricultural applications.
Additional inputs for the automatic harvester include
field imagery from drones or satellites, depending on
field size.

4.5. Food and Crop Storage Bin Monitoring

Smart loT sensors can monitor the conditions within
storage bins, such as temperature, humidity, and gas
levels, to prevent spoilage and maintain the quality of
stored crops [44]. Predictive analytics run locally on the
MEC and can alert farmers and storage managers to
potential issues, enabling timely intervention.
Additionally, integration with automated ventilation and
temperature control systems can optimize storage
conditions in near-real time, further reducing spoilage
and energy consumption. This synergy between loT
monitoring, Al-driven analytics, and automation
enhances efficiency and sustainability in post-harvest
management, it does not necessarily require real-time
5G connectivity, legacy sensor networks are sufficient.

To address the complexities of large-scale
operations, modular loT systems can be deployed,
allowing flexible adaptation to different types of storage
facilities, crop requirements, and geographic climates.
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For instance, advanced sensor networks coupled with
edge Al can dynamically prioritize bins requiring
immediate attention. Challenges include the cost and
scalability of installing loT sensors. Furthermore,
developing Al models capable of adapting to diverse
and evolving environmental factors presents a
significant technical challenge. Overcoming these
hurdles will be crucial to making this solution universally
applicable and economically viable.

4.6. Animal Health and Aquatic Life Monitoring

The animal health and livestock management use
case leverage advanced technologies, including 5G,
computer vision and Al/ML, to monitor the health,
activity, nutrition, and growth of individual animals,
while providing comprehensive insights at the herd
level. State-of-the-art detection models such as You-
Only-Look-Once (YOLO) and Vision-Transformer,
enable real-time monitoring and analytics of critical
livestock activities like feeding, calving, breeding
detection, and predator alerts [45], [46].

These models, tailored to specific animal types (e.g.,
cattle, sheep, horses, goats, pigs, chickens and fishes)
and environmental conditions, support the development
of dynamic livestock management algorithms. These
algorithms optimize operations such as timely feeding,
efficient breeding assistance, and disease prevention
measures. Near-real-time analytics further ensure rapid
responses to issues, such as detecting when an animal
has not consumed water for several hours, enabling
farmers to take proactive actions to maintain herd
health.

In our catalyst project [25] we used 5G-enabled
cameras, animal tags, and sensors to provide precise
tracking and monitoring over large or remote areas,
transmitting high-resolution and reliable data about
health and location. For instance, these systems
enable ranchers to promptly identify and isolate sick
animals, thereby mitigating the spread of infections
within the herd. By integrating these technologies,
farmers can significantly reduce labor costs, save time,

and minimize losses while enhancing resource
allocation and operational efficiency.
4.7. Additional Use Cases

Drones are becoming pivotal in agriculture,

addressing critical needs throughout the farming
lifecycle. During the pre-season phase, they facilitate
land  surveys, measurement, and topography
assessment while assisting with water and soil
management efforts, including regeneration. Optimal
seedbed preparation also benefits from these
capabilities. In the early season, drones enhance
planting and sowing efficiency by monitoring stand
spacing, counting, and quality [47]. Moving into mid-
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season, drones play a critical role in improving
fertilization, monitoring crop growth to detect
anomalies, and predicting yield potential [48], [49].
Late-season applications focus on harvesting, where
drones contribute to biomass content analysis, crop
maturity assessment, and soil conservation. They also
aid in smart dispatch strategies for efficient crop
transport. Post-season activities, such as sorting,
classification, and storage optimization, are enhanced
through Al-integrated systems, which enable precise
crop categorization and logistics improvements in farm-
to-consumer supply chains, including automated
cleaning, grading, and packaging.

Supply chain transparency is another critical
improvement, with blockchain technology ensuring
traceability [50] and regulatory compliance across the
food supply chain.

The scalability of these solutions ensures adaptability
to diverse ranching environments, contributing to global
sustainability and increased productivity.

5. SOLUTION DESCRIPTION

A very important element of the solution consists of
5G-drones in-a-chain, as described in Section 3,
forming a scalable radio access network to address
rural coverage gaps, connected to a 5G private core
with MEC capabilities (as shown in Fig. 2). Each drone
covers a 500-meter diagonal area and can be easily
relocated to support other agricultural activities.
Typically, the drones are stationary on the ground when
not in flight, serving as mobile base stations while
agricultural machinery such as tractors, harvesters, and
agri robots operate within the coverage zone. By
detecting handover activities, the drones autonomously
relocate to the new area, maintaining continuous base
station functionality. This approach results in significant
energy savings as the drones are not airborne
continuously. In some scenarios, drones could remain
airborne for coverage, relying on line-of-sight
communication with fixed base stations for backhaul,
although flight time constraints may arise, potentially
mitigated by using multiple drones or tethered drones.
You may observe that the illustrated 5G transport
segment in Fig. 2 can reach up to 500 km. The solution
offers a cost-effective approach that unlocks new
business opportunities for 5G private network service
providers [48].

The 5G network, along with its associated business
support systems (BSS) such as order management
and product catalogs, enables subscribers to purchase
agricultural use cases and their underlying technologies
- network slicing, MEC, AI/ML/DL, robotics hardware/
software - via private networks designed for low-latency
applications. A shift towards service-based open
architecture integrates core network elements with
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northbound BSS through open APIs, enabling dynamic
and flexible network service management to cater to
diverse ecosystem requirements. By leveraging both

public and private 5G networks, telecom operators can

Figure 2. Orchestration of network slices in public & private 5G networks
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provide personalized agricultural solutions tailored to
the needs of farmers across various stages of
agriculture. Local MEC deployment is critical to
achieving ultralow latencies for tasks such as weeding
and harvesting, supported by seamless collaboration
between edge and cloud infrastructures.

Network slicing, a cornerstone of 5G, creates
multiple logical networks over a shared physical
infrastructure, each optimized for specific use cases.
Spanning end-to-end from devices to target
applications, a network slice integrates access,
transport, and core networks. Its effectiveness relies on
the weakest link in the chain. In particular, access
network slicing is pivotal, employing slice-specific
resource allocation, scheduling, and ftraffic isolation
mechanisms to meet performance requirements. Use
cases for network slices are categorized as eMBB,
uRLLC, and mMTC [51]. For example, animal and crop
health monitoring require eMBB slices, smart weeding
and harvesting rely on uRLLC slices, and applications
like smart irrigation, water management and storage
monitoring depend on mMTC slices, as illustrated in
Fig. 2.

Transport slices interconnect endpoints with defined
performance objectives, ensuring SLAs for end-to-end
slices. While an orchestrator specifies endpoints and
service-level goals, the transport slice controller
manages underlying network resources to achieve
these objectives. The core network acts as the anchor
for 5G slices, managing device subscriptions and
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enabling UE network slice selection. Core slice
attributes, such as coverage area, latency, throughput,
and resource sharing levels, determine the
configuration of the core network functions.

To realize the full potential of network slicing, CSPs
must design and operate services spanning access,
transport, and core domains, while actively engaging
with the agricultural robotics ecosystem to ensure
seamless connectivity.

A simplified business process, as illustrated in Fig. 3,
provides an overview of the selected use cases,
serving as a model for similar processes applicable to
other agricultural scenarios.

5.1. Farmer Registration and UE Activation

« The farmer registers themselves and their
agricultural robots (UEs) with the CSP’s network
via a dashboard, acquiring and assigning eSIM
cards to each UE.

* Following the delivery and insertion of the eSIM
cards into the UEs, the activation process
begins. The UEs connect to the 5G network,
identifying the required network parameters. If
necessary, the nearest MEC service is located
and assigned to the UE.

* Once activated, the UE enters an off-mode state
and will reactivate before the start of the next
scheduled activity during the season. This
process supports intent-driven networking for
business operations.
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Figure 3. Farmer’'s and CSP’s perspective (intent-driven activities) — a business process view

5.2. Service Request and Activation

The farmer accesses the telecom operator's or
CSP's order management platform via a
dashboard to initiate the service request.

The system verifies service availability, and the
farmer specifies the desired Service Level
Agreements (SLAs), effectively requesting
network slices between UE and the 5G network.

If required, a 5G-drone network is set up and
activated to cover the designated area.

Upon request, satellite- or drone-generated
telemetry images and weather forecast data are
integrated with the farmer’s area of activity to
enhance decision-making.

Extensive agricultural datasets containing region-
and season-specific images of crop and weed
species support the AI/ML training process. If
requested, pre-trained models for the selected
crops or weeds are transferred to the assigned
MEC for on-site processing.
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5.3. Real-time Communication and Inference

The farmer activates the agricultural robots
and/or drones for tasks such as weeding or
harvesting. Once the selected robot or drone
reaches the designated field area, it begins its
operation.

Continuous  real-time  communication is
established between the robot or drone and the
MEC service, enabling instant decision-making
via Al/ML algorithms. In some scenarios, drones
equipped with 5G base stations are configured in
a chain to extend real-time connectivity across
large field areas effectively.

Robots or drones transmit camera images to the
AI/ML unit, where the data is processed to
generate control commands with ultralow
latency. For example, as a robot moves along a
seedbed, it continuously transmits images of
crops and weeds to the MEC. Based on Al/ML
analysis, the system makes immediate decisions
to selectively spray crops/weeds with precise
amounts of pesticide/herbicide, minimizing
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chemical usage. Similarly, during harvesting,
decisions are made about whether to pick a fruit
or crop based on its ripeness. This iterative
process continues until the robot or drone
completes its task and returns to the farm.

+ Additional drones may be assigned for crop
health monitoring, performing daily flights over
selected areas with real-time connectivity and
instant computer vision analytics to identify
growth anomalies.

5.4. Non-real-time Communication and Inference

» The farmer accesses the platform to activate the
irrigation system tailored to specific activity
requirements such as region, season, soil type,
fertility maps, crop type, and weather forecast.
Through the platform, the farmer can monitor
water usage, strategize irrigation plans, and
evaluate drainage efficiency.

«  Similarly, the farmer can activate and monitor the
smart storage system tailored to specific crop or
food types, such as humidity, temperature, gas
concentration.

« The MEC aggregates sensor data (e.g., soil
moisture, temperature) from the field regularly,
such as hourly intervals, and integrates
meteorological information (e.g., air temperature,
rainfall, sunlight hours, weather forecasts). Using
AlI/ML algorithms, the system combines these
inputs with fertilty maps and crop water
requirements to generate a watering schedule
for the irrigation system or activate ventilation in
the storage. Given the non-critical nature of
these decisions, the accepted latency for
decision-making can extend up to 100 seconds.
The irrigation/storage system then operates taps
as instructed by the MEC.

* On the dashboard, the farmer can visualize and
monitor crop health and growth stages,
facilitating early identification of leaks, diseases,
and nutrient deficiencies. Tools for analyzing
growth patterns, soil conditions, and precipitation
assist in estimating yield and identifying
opportunities to optimize fertilizer and pesticide
use, reducing costs and environmental impact
while maintaining productivity. Additionally, the
farmer can evaluate damage caused by halil,
disease, fire, extreme weather events, or other
factors to assess financial impacts and
streamline insurance claims.

« The farmer can deploy drones for crop and
livestock management. These drones provide
high-resolution RGB or multispectral data for
applications such as counting, detection,
behavior analysis, and feed availability
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monitoring. Drone data offers superior spatial
and temporal resolution compared to satellite
imagery and is more cost-effective than manned-
aircraft surveys for equivalent data acquisition.

5.5. Billing, Invoicing and Marketplace Offering

* The CSP generates a periodic bill, typically on a
monthly basis, summarizing the services utilized
by the farmer. Details include itemized charges
for each service, such as network slice usage,
MEC processing, drone operations, and Al/ML
analytics, with usage metrics like data transfer
volume, time of use, and resources consumed
for transparency.

+ CSP may provide optional subscriptions for
advanced Al/ML models, crop yield predictions,
or weather pattern insights.

» CSP may partner with agricultural insurance
providers to integrate crop damage assessments
into the invoicing process, or share applicable
tax benefits and government support programs.

+ CSP provides a marketplace solution (logistics
coordination, buyer/seller matching, and quality
verification services) to streamline and expedite
post-harvest processes, offering farmers easier
access to resources and services needed after
harvesting.

6. RESULTS AND DISCUSSIONS

This study focuses on agricultural use cases
requiring ultra-low latency, with precision robotic
weeding and smart harvesting as central applications.
Precision weeding utilizes AI/ML/DL models at the
MEC for real-time weed identification and targeted
actions, such as pesticide or herbicide spraying,
necessitating immediate feedback. Similarly, smart
harvesting employs autonomous machines that
leverage MEC-based Al-driven image recognition to
identify ripe produce and handle crops delicately.

Table 3 presents the optimal attributes of network
slices for selected agricultural use cases,
demonstrating their alignment with eMBB, uRLLC, and
mMTC categories. Typical values for latency [52],
bidirectional asymmetrical throughput, mobility, density,
and link QoS are defined to guide implementation.
Notably, peak uplink speeds for key use cases,
including those with guaranteed bit rate (GBR)
capabilities, are 100 times higher than downlink
speeds, deviating from traditional consumer network
norms. Use cases such as weeding and harvesting
demand isolated uRLLC slices with stringent latency
requirements of approximately 10 milliseconds.
Parameters such as potential service area, service
time, and service availability ensure precise service
ordering and provisioning by farmers.
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Table 3
QoS attributes of our use case experiments for slice ordering and
provisioning
Use cases
] ] Animal and Smart Smart
Slice attributes  crop health ~ weeding and irrigation,
monitoring harvesting storage mon
Type of slice eMBB uRLLC mMTC
Latency (avg) ~1s ~0.01s ~100s
PeakULspeed ~ 100 Mbps ~ 100 Mbps ~ 0.1 Mbps
PeakDLspeed ~ 1 Mbps ~ 1 Mbps ~ 0.1 Mbps
Service area Regional Local Zonal
L up to several  up to several UE battery
Service time hours days/weeks life ~10y
UE mobility ~ 100 km/h ~ 20 km/h ~5km/h
UE density ~ 1.000/km? ~ 100/km? ~ 10.000/km?
Availability 99.99% 99.999% 99,9%
" 72/56 82/19 5/10
5G QoS ID GBR delaycritGBR  non-GBR

*Source: 3GPP TS 23.501 V19.2.0 (2024-12), pp. 187-213.

Latency requirements were found to depend
significantly on UE speed. Performance evaluations
conducted using a prototype robot [25] assessed
metrics such as time-to-detection and time-to-action
under varying velocity conditions. The maximum UE
speed is constrained by crop spacing (e.g., 20 cm in
seedbeds), MEC computational capacity, and the
UuRLLC slice, which contributes 10 ms to the total
round-trip time (RTT). Observed RTT values ranged
between 50 and 200 ms (see Fig. 4). Similar results
were obtained in [48]. Laboratory measurements and
field trials at Olds College Farm in Canada validated
these findings, showcasing the effectiveness of edge-
based Al processing over 5G networks.
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Figure 4. lllustration of low-latency requirements as a function of
UE speed (smart weeder)

Moderate-speed UEs, such as robots operating at 1—
2 m/s, can tolerate latency of 100-200 milliseconds for
tasks like weeding or harvesting. High-speed UEs,
including drones flying at 50 km/h, require latencies of
1-10 milliseconds for precise navigation and immediate
actuation. Stationary or low-speed UEs, such as
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irrigation systems, allow higher latency thresholds of up
to 100 seconds. Dynamic adaptation of network
resources based on UE speed optimizes performance
and efficiency, leveraging 5G-Advanced capabilities
and network slicing.

Field trials demonstrated substantial efficiency gains:
selective spraying operations reduced chemical usage
by 20%, while Al-driven irrigation models decreased
water consumption by 30% compared to traditional
methods. Livestock management systems, supported
by real-time alerts for feeding patterns and calving
events, saved ranchers up to 50% of operational time.

Our 5G-connected robotic system incorporates a
high-resolution camera that transmits images to the
MEC via ultralow-latency network slices. ML algorithms
classify plants using a database of over 1,000
annotated images, completing the detection-and-
response cycle within 200 milliseconds and achieving
95% weed identification accuracy. Compared to
manual weeding, which requires 20 hours per hectare,
the robotic system processes the same area in three
hours, significantly reducing labor and costs.

Field trials also revealed optimization opportunities.
Doubling the robot’'s speed (from 1 m/s to 2 m/s)
reduced pesticide coverage on weeds by 10%.
Lowering nozzle height from 60 cm to 30 cm further
reduced pesticide use by 15% and weed coverage by
30%, underscoring the importance of precise
mechanical configurations for optimal performance.

The findings emphasize the critical role of latency in
agricultural robotics, particularly for real-time decision-
making tasks. Comparative analyses confirm that 5G
technologies outperform legacy systems in latency,
throughput, and real-time responsiveness, aligning with
recent research [50], [51], [53]. While tested in
controlled environments, the proposed framework is
adaptable to diverse agricultural  scenarios,
demonstrating significant potential for advancing
precision farming practices.

6.1. Adaptability

In tropical regions, where rice and other water-
intensive crops like sugarcane, cassava, and bananas
are cultivated, 5G-enabled smart robotic technology
can address unique challenges such as high weed
density and fluctuating water levels. Autonomous
robots equipped with specialized sensors can navigate
flooded fields and dense vegetation to identify and
target weeds precisely. Using real-time edge
computing, the system adapts to local conditions,
ensuring efficient herbicide application.

In arid and semi-arid regions, crops like olives, date
palms, sorghum, and millet benefit from the application
of 5G-based smart robotic systems. The framework’s
ability to function in high temperatures and low humidity
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is supported by heat-tolerant sensors and drones.
Real-time connectivity enables precise herbicide
delivery and efficient energy use, critical in regions with
limited resources. The technology facilitates soil
moisture preservation and weed control.

In temperate climates, the 5G-enabled framework
supports a wide range of crops, including wheat, maize,
potatoes, cabbage, rapeseed, sunflower, sugar beets,
and grapes. Smart robots leverage advanced Al
models to differentiate crops from weeds, even in early
growth stages. They adapt to varying field layouts,
navigating uneven terrains, from tightly spaced potato
rows to sprawling sunflower fields, using real-time data
for navigation and precision application.

6.2. Scalability Explained Easy with Use Cases

Device Density: Assess the network's ability to
support high device density for rice fields with
submersible water sensors and drones monitoring
canopy health. Measure support for wheat, maize, and
vineyard systems where multiple robots, drones, and
sensors operate simultaneously. Evaluate density for
sparse yet critical devices used in olive groves or
pomegranate farms.

Network Throughput: Measure the throughput for
drones transmitting high-resolution images of pest
outbreaks. Test simultaneous video streams from
vineyard-monitoring drones and edge-based weed
detection for maize and potato farms. Evaluate
throughput for satellite-assisted irrigation monitoring
and olive yield mapping.

Latency and Reliability: Ensure ultra-low latency for
real-time feedback to autonomous harvesting robots in
rice fields. Validate latency for robot-driven harvesting
in vineyards or cabbage fields, where precision timing
is critical. Test latency for non-real-time alerts on soil
moisture levels and wind-driven pest movement across
orchards.

Dynamic Resource Allocation: Evaluate network
slicing for uRLLC, eMBB or uRLLC for all use cases
[54].

Edge Computing Scalability: Measure the MEC's
capacity to process Al models, evaluate scalability for
image  processing and real-time  crop/weed
classification. Assess edge capacity for multispectral
analysis for ripeness evaluation.

Energy Efficiency: Test energy efficiency of solar-
powered sensors and drones monitoring crop health.
Monitor energy consumption for robotic harvesters
working for extended hours.

Geographical Coverage and Mobility Support:
Ensure seamless coverage across waterlogged
terrains. Validate coverage for rolling hills in vineyards
and vast flatlands in maize farms. Test mobility support
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for autonomous vehicles
connected olive orchards.

Interoperability and Extensibility: Evaluate how easily
the 5G system integrates with legacy irrigation
systems. Assess interoperability with diverse
machinery used in wheat and potato harvesting.
Ensure compatibility with satellite-based weather
prediction systems and local groundwater monitoring
infrastructure.

Cost-Effectiveness: Measure cost per hectare for
deploying 5G-connected drones and sensors. Analyze
costs for robot fleets and sensor networks across fields.
Calculate costs for deploying low-power, solar-assisted
loT devices for water-efficient cultivation.

By adapting these measurements to the diverse
agricultural practices and climatic conditions, the
scalability of 5G networks can be holistically assessed
and optimized for global application.

in expansive, sparsely

6.3. Economic Viability for Smaller Farms

The economic viability of the 5G system for smaller
farms hinges on its ability to reduce operational costs
while boosting productivity. By leveraging network
slicing, MEC, and loT-enabled devices, smaller farms
can adopt precision agriculture tools tailored to their
needs without heavy upfront investments in hardware.
For instance, shared drone services and scalable edge
processing can reduce equipment costs. Additionally,
savings on inputs like water and chemicals due to
precise targeting, along with labor cost reductions
through automation, offset the initial setup costs. Intent-
driven models, such as Network-as-a-Service, further
enhance affordability, —making advanced 5G
technologies accessible even to small-scale farmers
globally.

7. CONCLUSIONS

This applied research study introduced a scalable
and innovative framework for integrating 5G-Advanced
networks with Al-driven loT technologies, tailored to
address the challenges and demands of modern
agriculture. The framework employs advanced
methodologies, including 5G-drone chains for extended
coverage, intent-based farming supported by network
slicing, and the migration of computational workloads
from user equipment to edge servers. By overcoming
traditional barriers such as high implementation costs
and limited scalability, the proposed approach
leverages intelligent edge infrastructure to make
precision agriculture accessible to farms of varying
scales and capacities.

By addressing challenges of latency, resource
efficiency, and scalability, the framework demonstrates
measurable benefits such as reduced water and
chemical usage, enhanced crop yields, and significant
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labor cost savings, making it economically viable even
for smaller farms. Enhanced rural connectivity fosters
real-time decision-making, traceability, and the
adoption of sustainable supply-chain practices, directly
aligning with United Nations Sustainable Development
Goals (SDGs) related to food security, clean energy,
climate action, and rural development. Quantifiable
impacts include reductions in water usage, greenhouse
gas emissions, pesticide application, and energy
consumption, alongside advancements in carbon
sequestration and CO, data collection. These
achievements underscore the transformative potential
of integrating 5G technologies and Al in agricultural
operations.

Although designed with agricultural applications in
mind, the principles and methodologies of this
framework are broadly applicable across industries
seeking sustainable solutions through advanced
technologies. Future research will focus on further
refining these technologies for broader applications and
expanding their implementation in real-world settings to
promote food security and rural development
worldwide. By advancing these goals, the framework
sets the foundation for a more sustainable and efficient
technological ecosystem across multiple sectors.
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