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ABSTRACT Efficient agricultural production increasingly relies on advanced technologies to address the challenges of 
sustainability, scalability, and cost-effectiveness. This paper investigates the application of 5G-Advanced networks as a 
transformative enabler for modern agriculture, offering significant efficiency and cost advantages over traditional wireless 
sensor networks. By leveraging cutting-edge technologies such as IoT, Multi-access Edge Computing, and Artificial 
Intelligence/Machine Learning/Deep Learning, this applied research study introduces an innovative framework that shifts 
actuation decisions from user equipment to the edge, enhancing scalability and simplifying device design. The proposed 
framework integrates drone-supported intelligent robotics with IoT-driven edge computing, tailored to the unique demands of 
rural agricultural areas. Case studies from an award-winning TM-Forum catalyst project validate the framework’s efficacy in 
architecture modeling, focusing on drone-assisted 5G networks, advanced orchestration, network slicing, and ultralow-
latency communication. These case studies emphasize precision and scalability in critical agricultural operations such as 
weeding, irrigation, harvesting, crop, animal and storage monitoring. The findings underscore the potential of 5G-Advanced 
networks to revolutionize agriculture by enabling precise, efficient, and sustainable practices. This approach addresses 
diverse system requirements and offers a robust solution for future-ready agricultural technologies, paving the way for a 
scalable and resilient agricultural ecosystem. 

KEYWORDS 5G-Advanced network connectivity, drones/UAVs, edge computing, intelligent robotics, IoT 
sensors, network slicing, real-time inference, ultralow latency.  

1. INTRODUCTION 
To address crop or livestock challenges effectively 

rather than merely detecting issues, it is essential to 
integrate artificial intelligence (AI) algorithms and 
robotics to enable real-time system operations. The 
implementation of 5G technology is pivotal in facilitating 
the high-speed connectivity and low-latency 
communication necessary for such advanced, 
responsive agricultural systems. 

Achieving productivity and sustainability in agriculture 
is often hindered by the prohibitive costs of advanced 
technologies for smaller farms. Modern agriculture is 
characterized by multifaceted challenges that impact 
both farmers and technology providers. From the 
perspective of farmers, critical issues include labor 

shortages, lack of technical skills, soil degradation, 
water limitations, crop and livestock losses, and the 
increasing demand for resilient plant and animal 
species. Simultaneously, communication service 
providers (CSP’s), including telecommunications and 
technology companies, face significant obstacles such 
as limited rural mobile network coverage, the digital 
divide, challenging agricultural environments, and 
fragmented data infrastructures. These barriers 
collectively impede the deployment of transformative 
solutions for the agricultural sector. 

The emergence of 5G technology represents a 
transformative step in the digitization of agriculture, 
enabling tailored solutions that address the unique 
operational goals of farmers. This transition is further 
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amplified by the “5G-Advanced” technology, the newest 
release of 5G (some other papers call it “Beyond 5G”), 
which integrates AI-driven functionalities into 5G radio 
access networks, core networks, and operational 
frameworks. Building upon our prior research [1], which 
explored the convergence of 5G private networks, edge 
computing, machine learning (ML), and robotic 
automation to tackle agricultural challenges, this paper 
extends these findings. It reviews the literature, 
explores the advanced capabilities of 5G-A, adds new 
use cases and deals with a comprehensive analysis of 
service orchestration, intent-driven order management 
and network slicing (NS), adding new results and a 
discussion on adaptability on scalability issues. 

In particular, this work focuses on high-demand 
agricultural applications that necessitate extreme 
technical specifications, such as high bandwidth 
demand in uplink, ultra-low latency for fast inferencing 
and dense sensor networks. Furthermore, a detailed 
description is presented for the deployment of a chain 
of drones to extend 5G coverage across agricultural 
areas with no public availability, illustrating the potential 
of this framework to address technical and operational 
challenges in rural settings. 

The remainder of this paper is structured as follows: 
Section 2 provides a concise review of the relevant 
literature. Section 3 outlines our proposed solution 
blueprint, while Section 4 discusses selected use cases 
spanning crop, food, and animal life cycles. Section 5 
examines the solution implementation from the 
perspectives of both farmers and service providers in a 
structured five-step approach. Subsequently, Section 6 
presents the results and discussion, and Section 7 
concludes the paper by summarizing the key findings 
and insights. 

2. SHORT REVIEW OF THE CURRENT 
LITERATURE 

Challenges in agriculture are exacerbated by the 
remote nature of farming locations, limited access to 
technology, labor shortages, and societal perceptions 
of farming, as noted in [2]. The authors provide an 
overview of smart farming, including use cases 
involving autonomous robots and sensors, but relying 
exclusively on a poor internet connectivity. They identify 
the rapid growth of these technologies as a challenge 
due to the potential for increased e-waste from frequent 
hardware upgrades. Complexities of optimizing large-
scale decision-making remain unresolved. 

Research in [3] highlights an IoT-based architecture 
framework (from 2019) tailored for the agri-food sector, 
encompassing a coherent set of architectural 
viewpoints and comprehensive guidelines. This 
framework was applied to 19 diverse use cases 
spanning arable farming, dairy production, fruit and 

vegetable cultivation, and meat supply chains. Its 
implementation enabled consistent, timely, and 
structured modeling of these use cases, aligning with 
the large-scale industrial objectives of the European 
IoF2020 project. However, the study's primary 
weakness lies in its lack of concrete reference 
architectures and insufficient attention to real-time 
communication functionalities, such as immediate 
machine control via advanced network interfaces. 

The article in [4] presents a detailed survey of state-
of-the-art IoT advancements in agriculture from 2019. It 
explores agricultural network architectures, platforms, 
and topologies that provide access to IoT backbones, 
aiding farmers in increasing crop yields. The study also 
offers an extensive review of emerging IoT 
applications, devices, sensors, communication 
protocols, and cutting-edge innovations tailored for 
agriculture. Instead, the paper in [5] from 2022 
investigates the tools and equipment used in 
applications of wireless sensors in IoT agriculture, and 
the anticipated challenges faced when merging 
technology with conventional farming activities. The 
primary contribution of the work in [6] (from 2023) is the 
development of an AI and IoT framework tailored for 
smart and sustainable agriculture. This framework 
addresses challenges arising from the fragmented 
nature of farming production systems, and aims to 
advance solutions that resolve inefficiencies and 
improve coherence across agricultural processes, 
thereby supporting sustainable and innovative farming 
practices. 

The following four articles each explore distinct 
aspects of smart agriculture, emphasizing the 
transformative role of AI and IoT technologies in 
improving efficiency and sustainability in farming 
practices. Article [7] provides a systematic review of ML 
applications in agriculture, highlighting their use in soil 
parameter prediction, disease detection, crop quality 
assessment, and livestock monitoring. The review 
paper [8] focuses on artificial intelligence in agriculture, 
surveying AI/ML methods such as expert systems, 
image processing, and robotics, while discussing their 
role in enhancing productivity and sustainability. Article 
[9] emphasizes the potential of deep learning (DL) in 
agriculture, reviewing 120 studies that cover 
applications like disease detection, plant classification, 
and smart irrigation. Article [10] specifically addresses 
deep-learning-based object counting in agriculture, 
analyzing recent advancements, datasets, and 
methodologies. 

Five years ago, the studies in [11] and [12] 
emphasized the integration of IoT and wireless sensor 
networks as essential for smart agriculture, utilizing 
technologies such as ZigBee, WiFi, SigFox, and 
LoRaWAN for non-real-time data collection in 
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applications like irrigation, soil monitoring, pest control.     
Table 1 

Different wireless communication technologies and their characteristics 

Parameters ZigBee WiFi NB-IoT LoRa (PHY+WAN) SigFox 

Standard IEEE 802.15.4 IEEE 802.11a/b/g/n 3GPP rel. 13 ITU-T Y.4480 IEEE 802.15.4g 

Frequency band 
868/915 MHz and  
2.4 GHz (free) 

2.4 GHz  
(free) 

868-915 MHz 
(licenced) 

868/923 MHz  
(free) 

868/915 MHz 
(free) 

Data rate 20, 40 and 250 kbps 11-54 and 150 Mbps 
160-200 kbps (UL), 
160-250 kbps (DL) 250 bps - 22 kbps 100 bps 

Latency 30 ms 50 ms 1s ~1-3 s ~2-8 s 

Max range (distance) 100 m 100 m 1-25 km 15 km 10 km 
 
Network size 65,000 nodes 32 nodes 1,000 nodes 10,000 nodes /BS 1,000,000 nodes /BS 
 
Network topology 

point-to-point, tree, 
star, mesh point-to-hub cellular system star-of-stars star 

Limitations 
LoS between 
sensors and agent 

power consumption, 
long access time 

does not support the 
handover 

low  
data rate 

very low  
data rates 

 

The review in [13] adds Narrowband IoT (NB-IoT) to 
the above list, and validates communication times (see 
Table 1). Field tests and analysis reveal that ZigBee is 
most effective for monitoring in facility agriculture, 
whereas LoRa and NB-IoT are better suited for field 
agriculture scenarios. A recent study from 2023 
presented in [14] investigates the primary applications 
of IoT and unmanned aerial vehicles (UAVs) in smart 
farming, with an emphasis on network functionalities 
and connectivity requirements. It provides a distance-
based classification of communication technologies 
employed in IoT systems. To address connectivity 
limitations, the paper evaluates meshed LoRa WAN 
gateways as a solution to connectivity challenges. 

Instead, the authors in [15] emphasize the pivotal 
role of cellular technologies in enabling connectivity for 
IoT-based sensors and smart farming machinery 
across expansive agricultural fields, where short-range 
communication proves inadequate. Future agricultural 
machinery, such as UAVs, is expected to leverage 
cellular networks for real-time communication during 
operations over large areas. The focus is increasingly 
shifting toward advanced technologies such as 
standalone 5G and 5G-Advanced, which are poised to 
replace legacy wireless sensor networks, ensuring 
continuous connectivity for smart farming systems. 
Similarly, the studies presented in [16] and [17] review 
the advancements of 5G IoT and Big Data in smart 
agriculture, providing insights into its development, 
architecture, enabling technologies, and application 
scenarios. They also discuss practical implementations, 
highlight the transformative impact of 5G on agricultural 
practices, and addresses associated key technologies, 
challenges, and scientific problems. 

Nevertheless, the aforementioned studies lack 
comprehensive, actionable frameworks for effectively 
integrating these technologies into scalable and 
practical agricultural solutions. 

The current landscape reveals additional barriers, 
such as: 

• data collection practices: inconsistent integration of 
IoT sensors limit the accuracy and usability of 
agricultural data; 

• limited robotic adoption: agricultural robotics show 
promise but remain in early stages, with high costs 
limiting use, especially for smaller farms; 

• connectivity challenges: limited rural 5G availability 
prevents the implementation of advanced solutions that 
rely on high-speed, low-latency networks; 

• environmental impacts: harsh conditions like 
extreme weather, dust and debris reduce IoT and 
autonomous system reliability; 

• insufficient data processing: a lack of edge 
computing infrastructure in rural areas delays real-time 
processing and actionable insights. 

Related to this last point, the article [18] explores the 
integration of Multi-Access Edge Computing (MEC) into 
mobile network architectures, highlights MEC enablers 
and network slicing, reviews optimization approaches 
for MEC resources and QoS parameters, and proposes 
an architectural framework. The paper [19] reviews the 
integration of MEC and NS for efficient resource 
allocation, examines their role in 5G-Advanced systems 
and identifies current challenges. Edge computing, 
when integrated with 5G, satellite imaging [20], AI and 
IoT, offer transformative potential for agriculture. 
However, these advancements require robust rural 
connectivity, ruggedized equipment, and scalable 
architectures to overcome existing barriers.  

Finally, the article in [21] introduces the scope of 
Agriculture 5.0, detailing the key features and 
technologies anticipated in 6G-IoT communication 
systems. It emphasizes the critical role of these 
emerging technologies in advancing smart agriculture 
and concludes with an exploration of future challenges 
and opportunities in the field.  
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Figure 1. High level solution: 5G-drone/MEC deployment for smart agriculture (potential CSP offering to farmers) 

 
3. A SCALABLE ARCHITECTURE 

Our goal is to create a unified reference architecture 
tailored for smart agricultural use cases, leveraging 5G-
Advanced, private networks, drones, cameras, 
agricultural robots, sensor networks, edge computing, 
cloud computing, AI/ML/DL, computer vision, satellite 
imagery, weather forecast, historical data sets and 
marketplaces.  

This framework addresses key challenges such as 
enabling farmers to access AI-driven technology 
remotely, scaling AI solutions for larger farms, and 
providing outcome-based recommendations by 
integrating historical and real-time data. Real-time 
insights will improve in-season decision-making for 
crop productivity and animal health, while drones and 
robotic systems, enhanced by AI, optimize operational 
efficiency (see Fig.1).  

A scalable architecture enables the farmer to 
leverage cutting-edge AI and 5G-Advanced 
technologies to have intent-based farming 
management tools. Emerging technologies such as 
generative AI can be also used to enhance context and 
usability to capture intent and provide real-time 
feedback for the farmer. 

Farmers can utilize an enterprise portal to access, 
purchase, and manage various agricultural use case 
services. Through the chatbot or direct communication, 
farmers can express their needs, leading to the 
preparation and loading of customized offers in the 
operator portal. The farmer can then conveniently order 
and manage their assets via this portal. Upon logging 
in, the dashboard serves as the starting point, 

displaying tailored offers prioritized through a smart 
offering mechanism. An automated infrastructure offers 
real-time data, featuring fertility maps, weed/crop data 
sets, sensor feeds, and productivity reports, among 
others. 

IoT sensors provide critical data on soil moisture, 
temperature, rainfall, and other environmental 
variables, which can be easily combined with global 
meteorological data and weather forecast, essential for 
precision agriculture. Satellite imaging provides insights 
into vegetation growth at the whole farm area, erosion, 
calamities, deforestation, CO2 emissions, provides 
historical input for fertility maps, thus offering a holistic 
view of agricultural landscapes. 

Cloud-native platforms and open APIs allow for a 
unified partner eco-system. The data hub serves as a 
versatile API platform designed to aggregate, 
normalize, and contextualize agricultural datasets from 
multiple providers. It supports a wide range of data 
types, including diverse crop data, weed data, sensor 
data, satellite imagery, and drone-captured images, 
enabling seamless integration and analysis. Built with 
extensibility in mind, the data hub ensures adaptability 
to evolving agricultural data needs. 

Drones or UAVs, play a pivotal role in extending 5G 
coverage in agricultural and remote areas while 
performing critical tasks such as monitoring livestock, 
assessing biodiversity, detecting deforestation, 
identifying weeds, analyzing crop growth, and enabling 
remote spraying. Various types of agricultural drones 
are categorized in [22] and [23], including harvesting, 
spraying, conventional, mapping, and sensing UAVs. 
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However, these classifications lack a focus on 
addressing coverage issues. 

To address this gap, we propose specific criteria that 
must be satisfied to develop an effective 5G coverage 
enhancement solution using drones tailored to 
agricultural applications. These criteria aim to ensure 
robust connectivity, operational efficiency, and 
scalability in supporting the diverse demands of 
modern agriculture: 

• Limited coverage area: Providing 5G coverage 
using millimeter-wave technology in agricultural 
areas is challenging due to the short range of 
small cells (usually up to 500 meters), leading to 
higher deployment costs. 

• Drone-based base stations: Drones equipped 
with 5G base stations can act as mobile 
coverage units, forming a chain to provide 
extended connectivity or landing in preassigned 
areas for targeted coverage during specific 
agricultural activities. 

• Airborne coverage: For some agriculture use 
cases, drones can provide on-demand, flexible 
5G coverage while airborne. Line-of-sight 
communication with fixed base stations ensures 
reliable backhaul, supporting latency-sensitive 
applications like real-time livestock monitoring or 
autonomous weeding or harvesting operations. 

• Dynamic deployment for cost efficiency: Since 
coverage is needed only during specific periods 
(e.g., weeding, harvesting, crop health 
monitoring), drones can be redeployed to 
neighboring farms, enabling resource sharing 
and cost reductions across territories. 

• High-throughput and low-latency applications: 
5G-enabled drones can support bandwidth-
intensive applications, such as real-time video 
streaming for animal or crop health analysis, 
remote equipment control (weeding, harvesting). 

• Integration with IoT ecosystems: 5G drones can 
act as mobile hubs, connecting sensors and IoT 
devices deployed across farms, facilitating tasks 
like soil moisture analysis or smart irrigation. 

• AI-driven drone management: Combining 5G 
with AI technologies enables intelligent drone 
management, such as automated path planning, 
weed detection, intelligent spraying, thus 
ensuring sustainability and cost-effectiveness. 

• Energy optimization: Energy-efficient drone 
operations can extend their service duration, 
such as implementing energy-saving modes 
during idle times or solar-powered drones to 
enhance sustainability. 

• Extended operations: Tethered drones, 
connected to a ground station for continuous 

power supply and backhaul communication, can 
provide long-duration coverage with minimal 
downtime, albeit at the cost of reduced mobility. 

• Multi-drone coordination: Multiple drones can be 
coordinated to provide uninterrupted service by 
rotating active drones and recharging others, 
effectively overcoming flight time limitations. 

• Support for emergency connectivity: Drones 
equipped with 5G can also provide temporary 
connectivity during emergencies, such as natural 
disasters or outages, ensuring uninterrupted 
communication and critical services. 

These enhanced functionalities make 5G-enabled 
drones a transformative solution for delivering 
connectivity and enabling advanced digital applications 
in agricultural settings. 

Efforts to create seamless technological experiences 
for farmers are further complicated by integration 
challenges. These arise from multiple standards-
defining organizations (e.g., 3GPP, ETSI, GSMA, TM 
Forum), which result in varied protocols and 
frameworks; the proliferation of open-source initiatives 
with inconsistent compatibility; diverse third-party data 
services that are cumbersome to integrate; and 
variability in agricultural equipment interfaces, which 
hampers interoperability. The coexistence of multiple 
cloud platforms also creates integration difficulties, 
delaying the rollout of innovative services and revenue-
generating opportunities. A holistic strategy is essential 
to overcome these integration challenges and unlock 
the full potential of modern agricultural technologies. 

Our blueprint allows for the deployment of all these 
advanced equipment on the farm, thus optimizing the 
farmer‘s time, reducing labor cost and helping locally 
and globally with the UN sustainability goals [24], [25]. 

4. SELECTED SMART USE CASES 
The following farming use cases are examples of the 

type of services enabled by the blueprint that the 
farmer can purchase and use. They cover the different 
aspects of crop and food cycle management, as well as 
animal health management. 

4.1. Smart Weeding 
Earlier studies in [26], [27], [28], [29], [30], [31] 

focused on automating weed control by improving real-
time weed identification using different algorithms and 
optimizing the mechanical design of the weeding robot. 
The proposed crop-weed classification systems may be 
of different nature, applicable for different crops, but 
they demonstrate robust pixel-wise labeling of crops 
and weeds (include spatial information from image 
sequences). 



NEVU JEA  SANDOR SZEKELY et al: Scalable Architecture and Intelligent Edge with 5G- 
JOURNAL OF ENGINEERING AND ARCHITECTURE  Advanced, MEC, IoT, UAVs and AI for a Sustainable Agriculture and Food 

Operations 
 

VOLUME 3, ISSUE 1 2025   6  

 Table 2 
Requirements for selected use cases and the proposed solutions 

Selected Use 
Cases: 

smart weeding,  
smart harvesting 

smart irrigation,  
water management 

crop health monitoring,  
animal health monitoring 

Requirements: 

Automatic robots (UE) + HD cams 
High velocity (5 m/s), large data UL 
Ultralow latency UEMEC:10 ms 
AI/ML for classifying crops (form, 
size, color) 
AI/ML for classifying weeds (form, 
size, color) 
Satellite / drone imagery (weed 
map, crop growth), GPS navigation  
Closed-loop operation in  
real-time (< 200 ms) 
 

Massive nr. of sensors (temp, humid) 
High range (~20 km)  
Low energy, easy installation 
Low bandwidth need UE  CDC 
Smart irrigation equip (mob vs. fixed) 
AI/ML for smart irrig. algo’s (@CDC) 
Satellite images with soil types & 
growth (nDVI),  
Weather forecast 
Field maps (variable irrigation zones) 
non-real-time decision (> 100 s) 

HD cameras at selected locations on 
the farm 
HD cameras on drones for outdoor 
Coverage extension with chain of 
drones 
High BW need uplink UE  MEC 
AI/ML/DL, computer vision algos 
(@MEC) 
GPS navigation  
Closed-loop operation in  
near-real-time (~1 s) 

Solution Proposal: 
5G-A mmW (private, on drones) 
& cloud, MEC + CDC + AI/ML & 
uRLLC + eMBB slice, asym. up/dw 

LTE Cat 4, NB-IoT, LoRaWAN or 5G 
eRedCap 600-900 MHz & cloud, 
CDC + AI/ML &  mMTC slice, sym.   

5G-A mmW (private, on drones) 
& cloud, MEC + CDC + AI/ML/DL 
& eMBB slice, asym. up/dw 

Abbreviations: 
CDC: Central Data Computing  
eMBB: enhanced Mobile 
Broadband 

5G-A mmW: millimeter Wave   
uRLLC: ultra-Reliable Low Latency 
Communication          

 
5G eRedCap: e Reduced Capability 
mMTC: massive Machine Type 
Communication      

 

In contrast, we propose transitioning decision-making 
intelligence to the network edge via 5G-A technology to 
reduce costs and improve the robustness of weeding 
robots. This approach enables the deployment of more 
advanced computer vision and machine learning 
algorithms, with inference results transmitted in real-
time back to the robots through the same 
communication link. We implemented our approach. 

In our first scenario, a smart robotic weeder connects 
to an edge server via 5G-A, enabling weed 
identification and targeted spraying as it moves at a 
constant speed along the seedbed. AI/ML algorithms 
control the process, with input from a camera mounted 
on the automatic weeder. Machine learning classifies, 
detects, and segments the objects to be detected by 
describing data features and extracting useful 
information from them. The system performs output 
actions such as spraying pesticide, physically 
extracting weeds, or using thermal methods. Key 
requirements include extremely low latency and high 
uplink throughput for 5G-A connectivity, as well as real-
time AI/ML decision-making and control at the MEC. A 
preliminary training phase using relevant weed data 
was essential. Additional requirements for this use case 
are detailed in column one of Table 2 (multiple use 
cases may have the same requirements). Our 
approach significantly enhances efficiency while 
reducing the dependency on vulnerable hardware, 
such as GPUs on the weeder. The advent of 5G 
technology facilitates innovative operational schemes 
for robotics, allowing robots to execute a substantial 
portion of their tasks autonomously while delegating 
complex decision-making processes to the edge 
server. 

In our second scenario, a specialized 5G-drone 
captures orthographic images from an altitude of 10 
meters to detect weeds in a designated area prior to 
seeding, similarly, as in [32] and [33]. These images 
are transmitted in real-time to the edge server, where 
an AI/ML process identifies weed-infested micro-zones. 
The server then generates a file specifying the weed 
positions, which is sent back to the specialized drone. 
This drone subsequently applies a selected pesticide 
spraying method during its flight, ensuring precise and 
efficient weed management. 

4.2. Crop Health Monitoring 
Crop health monitoring, as demonstrated in [34] and 

[35], leverages drone-acquired images to assess plant 
health throughout growth stages using advanced AI-
based semantic segmentation models such as U-Net 
and Explainable AI. This facilitates timely and 
appropriate interventions by farmers. In our catalyst 
example [25], a 5G-drone captures high-resolution 
images of potato fields from a height of 10 meters, 
which are then immediately pre-processed at the edge 
server and integrated into the farm management 
system. This technology effectively identifies stressed 
plants, optimizes resource use, aids in harvest 
scheduling, and is adaptable to other crops and 
environments. 

Computer vision technologies enhance agricultural 
practices by analyzing leaf size, stem length, coloration, 
curvature, spotting, and tearing. When an ML algorithm 
detects anomalies, it triggers an alert on the monitoring 
dashboard. A 5G-drone can then be sent out for 
adequate actions. These advancements reduce labor-
intensive tasks and time-consuming processes. 
Additionally, visual sensing and image recognition 
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technologies enable tracking of crop health, monitoring 
maturity, and predicting yields [36], as well as the 
automatic detection of plant diseases and pests. 

4.3. Smart Irrigation and Water Management 
Smart irrigation systems harness the capabilities of 

5G, IoT networks, soil moisture sensors, weather 
forecasts, AI/ML, and advanced irrigation equipment to 
optimize water usage for crops [37]. These systems 
analyze soil and weather data to develop predictive soil 
humidity models, which then activate precise control 
algorithms tailored to specific crop requirements. By 
ensuring optimal moisture levels with minimal water 
consumption, this approach achieves remarkable water 
efficiency [38]. The methodology adapts seamlessly to 
varying rain conditions, air humidity, weather patterns, 
crop types, and soil compositions. Its successful 
application in tomato fields, notably in Spain [39] and 
Ethiopia [40], demonstrates how technological 
innovation can address global water management 
challenges while promoting environmental 
sustainability. 

To function effectively, cloud-based AI-controlled 
irrigation equipment requires various inputs, including 
data from soil, moisture, and temperature sensors; 
weather forecasts; crop and soil type information; and 
satellite or drone imagery of the fields. Using this data, 
the system can precisely activate irrigation 
mechanisms for the required duration and specific 
areas of the field, ensuring targeted water delivery. 

The 5G-A connectivity is not mandatory for this use 
case, as there are many alternative wireless 
technologies (see Table 1), but can be used optionally 
in order to have just one unified technology, offering 
low-throughput connections, extended coverage for 
large distances using lower frequencies (600-900 
MHz), and support for a massive number of sensors. 
While decision-making and control are AI-driven, they 
do not require real-time processing, which further 
supports scalability and resource efficiency. 

The water management features of our system 
extend beyond irrigation control. By analyzing 
vegetation and water indices derived from satellite 
imagery, the system evaluates overall farm health. It 
provides actionable recommendations for crop 
placement and sensor deployment, generates soil 
moisture maps through integrated satellite and sensor 
data, and applies AI/ML models to these datasets to 
extract valuable insights. Ultimately, these insights 
inform irrigation strategies tailored to specific crops and 
environmental conditions, exemplifying the 
transformative potential of smart irrigation systems in 
global agriculture. 

4.4. Smart Harvesting 

Smart harvesting enables precise and efficient fruit or 
vegetable collection, ensuring optimal ripeness and 
quality, often during nighttime when conditions are ideal 
for harvesting [41], [42], [43]. Governed by AI/ML 
algorithms at the edge server, the system uses input 
from cameras on the harvester or 5G-enabled drones 
to gather real-time data. This allows the AI to identify 
and pick only ripe fruit while ensuring bruise-free 
harvesting, particularly for delicate crops like 
strawberries, spinach and lettuce, which require careful 
handling and timely collection. Detailed technical 
requirements for smart harvesting are outlined in Table 
1. Not surprisingly, the connectivity requirements are 
very similar to those for smart weeding. 

The process incorporates advanced features such as 
real-time ripeness evaluation and obstacle detection in 
crops like wheat, along with low-latency response 
mechanisms that optimize harvesting efficiency. The 
proposed solution also offers high harvesting capacity, 
especially important for time-sensitive crops like 
strawberries, and can operate up to 20 hours daily, with 
nighttime automation enhancing productivity. 

The system may utilize 3D imaging technology to 
capture detailed data on fruits, vegetables, and plants, 
feeding AI models deployed at the network edge. Once 
the AI/ML/DL at the edge server determines that a fruit 
is ripe, it sends a real-time signal to the harvester to 
execute the picking action precisely. The system relies 
on 5G connectivity for ultra-low latency, high uplink 
throughput, and real-time AI decision-making on MEC, 
ensuring efficiency, precision, robustness, and 
scalability in modern agricultural applications. 
Additional inputs for the automatic harvester include 
field imagery from drones or satellites, depending on 
field size. 

4.5. Food and Crop Storage Bin Monitoring 
Smart IoT sensors can monitor the conditions within 

storage bins, such as temperature, humidity, and gas 
levels, to prevent spoilage and maintain the quality of 
stored crops [44]. Predictive analytics run locally on the 
MEC and can alert farmers and storage managers to 
potential issues, enabling timely intervention. 
Additionally, integration with automated ventilation and 
temperature control systems can optimize storage 
conditions in near-real time, further reducing spoilage 
and energy consumption. This synergy between IoT 
monitoring, AI-driven analytics, and automation 
enhances efficiency and sustainability in post-harvest 
management, it does not necessarily require real-time 
5G connectivity, legacy sensor networks are sufficient. 

To address the complexities of large-scale 
operations, modular IoT systems can be deployed, 
allowing flexible adaptation to different types of storage 
facilities, crop requirements, and geographic climates. 



NEVU JEA  SANDOR SZEKELY et al: Scalable Architecture and Intelligent Edge with 5G- 
JOURNAL OF ENGINEERING AND ARCHITECTURE  Advanced, MEC, IoT, UAVs and AI for a Sustainable Agriculture and Food 

Operations 
 

VOLUME 3, ISSUE 1 2025   8  

For instance, advanced sensor networks coupled with 
edge AI can dynamically prioritize bins requiring 
immediate attention. Challenges include the cost and 
scalability of installing IoT sensors. Furthermore, 
developing AI models capable of adapting to diverse 
and evolving environmental factors presents a 
significant technical challenge. Overcoming these 
hurdles will be crucial to making this solution universally 
applicable and economically viable. 

4.6. Animal Health and Aquatic Life Monitoring 
The animal health and livestock management use 

case leverage advanced technologies, including 5G, 
computer vision and AI/ML, to monitor the health, 
activity, nutrition, and growth of individual animals, 
while providing comprehensive insights at the herd 
level. State-of-the-art detection models such as You-
Only-Look-Once (YOLO) and Vision-Transformer, 
enable real-time monitoring and analytics of critical 
livestock activities like feeding, calving, breeding 
detection, and predator alerts [45], [46]. 

These models, tailored to specific animal types (e.g., 
cattle, sheep, horses, goats, pigs, chickens and fishes) 
and environmental conditions, support the development 
of dynamic livestock management algorithms. These 
algorithms optimize operations such as timely feeding, 
efficient breeding assistance, and disease prevention 
measures. Near-real-time analytics further ensure rapid 
responses to issues, such as detecting when an animal 
has not consumed water for several hours, enabling 
farmers to take proactive actions to maintain herd 
health. 

In our catalyst project [25] we used 5G-enabled 
cameras, animal tags, and sensors to provide precise 
tracking and monitoring over large or remote areas, 
transmitting high-resolution and reliable data about 
health and location. For instance, these systems 
enable ranchers to promptly identify and isolate sick 
animals, thereby mitigating the spread of infections 
within the herd. By integrating these technologies, 
farmers can significantly reduce labor costs, save time, 
and minimize losses while enhancing resource 
allocation and operational efficiency. 

4.7. Additional Use Cases 
Drones are becoming pivotal in agriculture, 

addressing critical needs throughout the farming 
lifecycle. During the pre-season phase, they facilitate 
land surveys, measurement, and topography 
assessment while assisting with water and soil 
management efforts, including regeneration. Optimal 
seedbed preparation also benefits from these 
capabilities. In the early season, drones enhance 
planting and sowing efficiency by monitoring stand 
spacing, counting, and quality [47]. Moving into mid-

season, drones play a critical role in improving 
fertilization, monitoring crop growth to detect 
anomalies, and predicting yield potential [48], [49]. 
Late-season applications focus on harvesting, where 
drones contribute to biomass content analysis, crop 
maturity assessment, and soil conservation. They also 
aid in smart dispatch strategies for efficient crop 
transport. Post-season activities, such as sorting, 
classification, and storage optimization, are enhanced 
through AI-integrated systems, which enable precise 
crop categorization and logistics improvements in farm-
to-consumer supply chains, including automated 
cleaning, grading, and packaging. 

Supply chain transparency is another critical 
improvement, with blockchain technology ensuring 
traceability [50] and regulatory compliance across the 
food supply chain.  

The scalability of these solutions ensures adaptability 
to diverse ranching environments, contributing to global 
sustainability and increased productivity. 

5. SOLUTION DESCRIPTION 
A very important element of the solution consists of 

5G-drones in-a-chain, as described in Section 3, 
forming a scalable radio access network to address 
rural coverage gaps, connected to a 5G private core 
with MEC capabilities (as shown in Fig. 2). Each drone 
covers a 500-meter diagonal area and can be easily 
relocated to support other agricultural activities. 
Typically, the drones are stationary on the ground when 
not in flight, serving as mobile base stations while 
agricultural machinery such as tractors, harvesters, and 
agri robots operate within the coverage zone. By 
detecting handover activities, the drones autonomously 
relocate to the new area, maintaining continuous base 
station functionality. This approach results in significant 
energy savings as the drones are not airborne 
continuously. In some scenarios, drones could remain 
airborne for coverage, relying on line-of-sight 
communication with fixed base stations for backhaul, 
although flight time constraints may arise, potentially 
mitigated by using multiple drones or tethered drones. 
You may observe that the illustrated 5G transport 
segment in Fig. 2 can reach up to 500 km. The solution 
offers a cost-effective approach that unlocks new 
business opportunities for 5G private network service 
providers [48]. 

The 5G network, along with its associated business 
support systems (BSS) such as order management 
and product catalogs, enables subscribers to purchase 
agricultural use cases and their underlying technologies 
- network slicing, MEC, AI/ML/DL, robotics hardware/ 
software - via private networks designed for low-latency 
applications. A shift towards service-based open 
architecture integrates core network elements with 
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northbound BSS through open APIs, enabling dynamic 
and flexible network service management to cater to 
diverse ecosystem requirements. By leveraging both 

public and private 5G networks, telecom operators can  
 
 

Figure 2. Orchestration of network slices in public & private 5G networks 

 
provide personalized agricultural solutions tailored to 
the needs of farmers across various stages of 
agriculture. Local MEC deployment is critical to 
achieving ultralow latencies for tasks such as weeding 
and harvesting, supported by seamless collaboration 
between edge and cloud infrastructures.  

Network slicing, a cornerstone of 5G, creates 
multiple logical networks over a shared physical 
infrastructure, each optimized for specific use cases. 
Spanning end-to-end from devices to target 
applications, a network slice integrates access, 
transport, and core networks. Its effectiveness relies on 
the weakest link in the chain. In particular, access 
network slicing is pivotal, employing slice-specific 
resource allocation, scheduling, and traffic isolation 
mechanisms to meet performance requirements. Use 
cases for network slices are categorized as eMBB, 
uRLLC, and mMTC [51]. For example, animal and crop 
health monitoring require eMBB slices, smart weeding 
and harvesting rely on uRLLC slices, and applications 
like smart irrigation, water management and storage 
monitoring depend on mMTC slices, as illustrated in 
Fig. 2. 

Transport slices interconnect endpoints with defined 
performance objectives, ensuring SLAs for end-to-end 
slices. While an orchestrator specifies endpoints and 
service-level goals, the transport slice controller 
manages underlying network resources to achieve 
these objectives. The core network acts as the anchor 
for 5G slices, managing device subscriptions and 

enabling UE network slice selection. Core slice 
attributes, such as coverage area, latency, throughput, 
and resource sharing levels, determine the 
configuration of the core network functions. 

To realize the full potential of network slicing, CSPs 
must design and operate services spanning access, 
transport, and core domains, while actively engaging 
with the agricultural robotics ecosystem to ensure 
seamless connectivity.  

A simplified business process, as illustrated in Fig. 3, 
provides an overview of the selected use cases, 
serving as a model for similar processes applicable to 
other agricultural scenarios. 

5.1. Farmer Registration and UE Activation 

• The farmer registers themselves and their 
agricultural robots (UEs) with the CSP’s network 
via a dashboard, acquiring and assigning eSIM 
cards to each UE. 

• Following the delivery and insertion of the eSIM 
cards into the UEs, the activation process 
begins. The UEs connect to the 5G network, 
identifying the required network parameters. If 
necessary, the nearest MEC service is located 
and assigned to the UE. 

• Once activated, the UE enters an off-mode state 
and will reactivate before the start of the next 
scheduled activity during the season. This 
process supports intent-driven networking for 
business operations. 
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Figure 3. Farmer’s and CSP’s perspective (intent-driven activities) – a business process view 

 
5.2. Service Request and Activation 

• The farmer accesses the telecom operator's or 
CSP's order management platform via a 
dashboard to initiate the service request. 

• The system verifies service availability, and the 
farmer specifies the desired Service Level 
Agreements (SLAs), effectively requesting 
network slices between UE and the 5G network. 

• If required, a 5G-drone network is set up and 
activated to cover the designated area. 

• Upon request, satellite- or drone-generated 
telemetry images and weather forecast data are 
integrated with the farmer’s area of activity to 
enhance decision-making. 

• Extensive agricultural datasets containing region- 
and season-specific images of crop and weed 
species support the AI/ML training process. If 
requested, pre-trained models for the selected 
crops or weeds are transferred to the assigned 
MEC for on-site processing. 
 
 

5.3. Real-time Communication and Inference 
• The farmer activates the agricultural robots 

and/or drones for tasks such as weeding or 
harvesting. Once the selected robot or drone 
reaches the designated field area, it begins its 
operation. 

• Continuous real-time communication is 
established between the robot or drone and the 
MEC service, enabling instant decision-making 
via AI/ML algorithms. In some scenarios, drones 
equipped with 5G base stations are configured in 
a chain to extend real-time connectivity across 
large field areas effectively. 

• Robots or drones transmit camera images to the 
AI/ML unit, where the data is processed to 
generate control commands with ultralow 
latency. For example, as a robot moves along a 
seedbed, it continuously transmits images of 
crops and weeds to the MEC. Based on AI/ML 
analysis, the system makes immediate decisions 
to selectively spray crops/weeds with precise 
amounts of pesticide/herbicide, minimizing 
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chemical usage. Similarly, during harvesting, 
decisions are made about whether to pick a fruit 
or crop based on its ripeness. This iterative 
process continues until the robot or drone 
completes its task and returns to the farm. 

• Additional drones may be assigned for crop 
health monitoring, performing daily flights over 
selected areas with real-time connectivity and 
instant computer vision analytics to identify 
growth anomalies. 

5.4. Non-real-time Communication and Inference 
• The farmer accesses the platform to activate the 

irrigation system tailored to specific activity 
requirements such as region, season, soil type, 
fertility maps, crop type, and weather forecast. 
Through the platform, the farmer can monitor 
water usage, strategize irrigation plans, and 
evaluate drainage efficiency. 

• Similarly, the farmer can activate and monitor the 
smart storage system tailored to specific crop or 
food types, such as humidity, temperature, gas 
concentration. 

• The MEC aggregates sensor data (e.g., soil 
moisture, temperature) from the field regularly, 
such as hourly intervals, and integrates 
meteorological information (e.g., air temperature, 
rainfall, sunlight hours, weather forecasts). Using 
AI/ML algorithms, the system combines these 
inputs with fertility maps and crop water 
requirements to generate a watering schedule 
for the irrigation system or activate ventilation in 
the storage. Given the non-critical nature of 
these decisions, the accepted latency for 
decision-making can extend up to 100 seconds. 
The irrigation/storage system then operates taps 
as instructed by the MEC. 

• On the dashboard, the farmer can visualize and 
monitor crop health and growth stages, 
facilitating early identification of leaks, diseases, 
and nutrient deficiencies. Tools for analyzing 
growth patterns, soil conditions, and precipitation 
assist in estimating yield and identifying 
opportunities to optimize fertilizer and pesticide 
use, reducing costs and environmental impact 
while maintaining productivity. Additionally, the 
farmer can evaluate damage caused by hail, 
disease, fire, extreme weather events, or other 
factors to assess financial impacts and 
streamline insurance claims. 

• The farmer can deploy drones for crop and 
livestock management. These drones provide 
high-resolution RGB or multispectral data for 
applications such as counting, detection, 
behavior analysis, and feed availability 

monitoring. Drone data offers superior spatial 
and temporal resolution compared to satellite 
imagery and is more cost-effective than manned-
aircraft surveys for equivalent data acquisition. 

5.5. Billing, Invoicing and Marketplace Offering 
• The CSP generates a periodic bill, typically on a 

monthly basis, summarizing the services utilized 
by the farmer. Details include itemized charges 
for each service, such as network slice usage, 
MEC processing, drone operations, and AI/ML 
analytics, with usage metrics like data transfer 
volume, time of use, and resources consumed 
for transparency. 

• CSP may provide optional subscriptions for 
advanced AI/ML models, crop yield predictions, 
or weather pattern insights.  

• CSP may partner with agricultural insurance 
providers to integrate crop damage assessments 
into the invoicing process, or share applicable 
tax benefits and government support programs. 

• CSP provides a marketplace solution (logistics 
coordination, buyer/seller matching, and quality 
verification services) to streamline and expedite 
post-harvest processes, offering farmers easier 
access to resources and services needed after 
harvesting.  

6. RESULTS AND DISCUSSIONS 
This study focuses on agricultural use cases 

requiring ultra-low latency, with precision robotic 
weeding and smart harvesting as central applications. 
Precision weeding utilizes AI/ML/DL models at the 
MEC for real-time weed identification and targeted 
actions, such as pesticide or herbicide spraying, 
necessitating immediate feedback. Similarly, smart 
harvesting employs autonomous machines that 
leverage MEC-based AI-driven image recognition to 
identify ripe produce and handle crops delicately. 

Table 3 presents the optimal attributes of network 
slices for selected agricultural use cases, 
demonstrating their alignment with eMBB, uRLLC, and 
mMTC categories. Typical values for latency [52], 
bidirectional asymmetrical throughput, mobility, density, 
and link QoS are defined to guide implementation. 
Notably, peak uplink speeds for key use cases, 
including those with guaranteed bit rate (GBR) 
capabilities, are 100 times higher than downlink 
speeds, deviating from traditional consumer network 
norms. Use cases such as weeding and harvesting 
demand isolated uRLLC slices with stringent latency 
requirements of approximately 10 milliseconds. 
Parameters such as potential service area, service 
time, and service availability ensure precise service 
ordering and provisioning by farmers. 
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Table 3 
QoS attributes of our use case experiments for slice ordering and 

provisioning 

 
Slice attributes 

Use cases 
Animal and 
crop health 
monitoring 

Smart 
weeding and 
harvesting 

Smart 
irrigation, 

storage mon 

Type of slice eMBB uRLLC mMTC 

Latency (avg) ~ 1 s ~ 0.01 s ~ 100 s 

PeakULspeed ~ 100 Mbps ~ 100 Mbps ~ 0.1 Mbps 

PeakDLspeed ~ 1 Mbps ~ 1 Mbps ~ 0.1 Mbps 

Service area Regional Local Zonal 

Service time 
up to several 

hours 
up to several 
days/weeks 

UE battery 
life ~10y 

UE mobility ~ 100 km/h ~ 20 km/h ~ 5 km/h 

UE density ~ 1.000/km2 ~ 100/km2 ~ 10.000/km2 

Availability 99.99% 99.999% 99,9% 

5G QoS ID* 
72/56  
GBR 

82/19 
delaycrit.GBR 

5/10 
non-GBR 

*Source: 3GPP TS 23.501 V19.2.0 (2024-12), pp. 187-213.  

 
Latency requirements were found to depend 

significantly on UE speed. Performance evaluations 
conducted using a prototype robot [25] assessed 
metrics such as time-to-detection and time-to-action 
under varying velocity conditions. The maximum UE 
speed is constrained by crop spacing (e.g., 20 cm in 
seedbeds), MEC computational capacity, and the 
uRLLC slice, which contributes 10 ms to the total 
round-trip time (RTT). Observed RTT values ranged 
between 50 and 200 ms (see Fig. 4). Similar results 
were obtained in [48]. Laboratory measurements and 
field trials at Olds College Farm in Canada validated 
these findings, showcasing the effectiveness of edge-
based AI processing over 5G networks.  

 

Figure 4. Illustration of low-latency requirements as a function of 
UE speed (smart weeder) 

 
Moderate-speed UEs, such as robots operating at 1–

2 m/s, can tolerate latency of 100–200 milliseconds for 
tasks like weeding or harvesting. High-speed UEs, 
including drones flying at 50 km/h, require latencies of 
1–10 milliseconds for precise navigation and immediate 
actuation. Stationary or low-speed UEs, such as 

irrigation systems, allow higher latency thresholds of up 
to 100 seconds. Dynamic adaptation of network 
resources based on UE speed optimizes performance 
and efficiency, leveraging 5G-Advanced capabilities 
and network slicing. 

Field trials demonstrated substantial efficiency gains: 
selective spraying operations reduced chemical usage 
by 20%, while AI-driven irrigation models decreased 
water consumption by 30% compared to traditional 
methods. Livestock management systems, supported 
by real-time alerts for feeding patterns and calving 
events, saved ranchers up to 50% of operational time. 

Our 5G-connected robotic system incorporates a 
high-resolution camera that transmits images to the 
MEC via ultralow-latency network slices. ML algorithms 
classify plants using a database of over 1,000 
annotated images, completing the detection-and-
response cycle within 200 milliseconds and achieving 
95% weed identification accuracy. Compared to 
manual weeding, which requires 20 hours per hectare, 
the robotic system processes the same area in three 
hours, significantly reducing labor and costs. 

Field trials also revealed optimization opportunities. 
Doubling the robot’s speed (from 1 m/s to 2 m/s) 
reduced pesticide coverage on weeds by 10%. 
Lowering nozzle height from 60 cm to 30 cm further 
reduced pesticide use by 15% and weed coverage by 
30%, underscoring the importance of precise 
mechanical configurations for optimal performance. 

The findings emphasize the critical role of latency in 
agricultural robotics, particularly for real-time decision-
making tasks. Comparative analyses confirm that 5G 
technologies outperform legacy systems in latency, 
throughput, and real-time responsiveness, aligning with 
recent research [50], [51], [53]. While tested in 
controlled environments, the proposed framework is 
adaptable to diverse agricultural scenarios, 
demonstrating significant potential for advancing 
precision farming practices. 

6.1. Adaptability 
In tropical regions, where rice and other water-

intensive crops like sugarcane, cassava, and bananas 
are cultivated, 5G-enabled smart robotic technology 
can address unique challenges such as high weed 
density and fluctuating water levels. Autonomous 
robots equipped with specialized sensors can navigate 
flooded fields and dense vegetation to identify and 
target weeds precisely. Using real-time edge 
computing, the system adapts to local conditions, 
ensuring efficient herbicide application. 

In arid and semi-arid regions, crops like olives, date 
palms, sorghum, and millet benefit from the application 
of 5G-based smart robotic systems. The framework’s 
ability to function in high temperatures and low humidity 
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is supported by heat-tolerant sensors and drones. 
Real-time connectivity enables precise herbicide 
delivery and efficient energy use, critical in regions with 
limited resources. The technology facilitates soil 
moisture preservation and weed control. 

In temperate climates, the 5G-enabled framework 
supports a wide range of crops, including wheat, maize, 
potatoes, cabbage, rapeseed, sunflower, sugar beets, 
and grapes. Smart robots leverage advanced AI 
models to differentiate crops from weeds, even in early 
growth stages. They adapt to varying field layouts, 
navigating uneven terrains, from tightly spaced potato 
rows to sprawling sunflower fields, using real-time data 
for navigation and precision application.  

6.2. Scalability Explained Easy with Use Cases 
Device Density: Assess the network's ability to 

support high device density for rice fields with 
submersible water sensors and drones monitoring 
canopy health. Measure support for wheat, maize, and 
vineyard systems where multiple robots, drones, and 
sensors operate simultaneously. Evaluate density for 
sparse yet critical devices used in olive groves or 
pomegranate farms. 

Network Throughput: Measure the throughput for 
drones transmitting high-resolution images of pest 
outbreaks. Test simultaneous video streams from 
vineyard-monitoring drones and edge-based weed 
detection for maize and potato farms. Evaluate 
throughput for satellite-assisted irrigation monitoring 
and olive yield mapping. 

Latency and Reliability: Ensure ultra-low latency for 
real-time feedback to autonomous harvesting robots in 
rice fields. Validate latency for robot-driven harvesting 
in vineyards or cabbage fields, where precision timing 
is critical. Test latency for non-real-time alerts on soil 
moisture levels and wind-driven pest movement across 
orchards. 

Dynamic Resource Allocation: Evaluate network 
slicing for uRLLC, eMBB or uRLLC for all use cases 
[54]. 

Edge Computing Scalability: Measure the MEC's 
capacity to process AI models, evaluate scalability for 
image processing and real-time crop/weed 
classification. Assess edge capacity for multispectral 
analysis for ripeness evaluation. 

Energy Efficiency: Test energy efficiency of solar-
powered sensors and drones monitoring crop health. 
Monitor energy consumption for robotic harvesters 
working for extended hours. 

Geographical Coverage and Mobility Support: 
Ensure seamless coverage across waterlogged 
terrains. Validate coverage for rolling hills in vineyards 
and vast flatlands in maize farms. Test mobility support 

for autonomous vehicles in expansive, sparsely 
connected olive orchards. 

Interoperability and Extensibility: Evaluate how easily 
the 5G system integrates with legacy irrigation 
systems. Assess interoperability with diverse 
machinery used in wheat and potato harvesting. 
Ensure compatibility with satellite-based weather 
prediction systems and local groundwater monitoring 
infrastructure. 

Cost-Effectiveness: Measure cost per hectare for 
deploying 5G-connected drones and sensors. Analyze 
costs for robot fleets and sensor networks across fields. 
Calculate costs for deploying low-power, solar-assisted 
IoT devices for water-efficient cultivation. 

By adapting these measurements to the diverse 
agricultural practices and climatic conditions, the 
scalability of 5G networks can be holistically assessed 
and optimized for global application. 

6.3. Economic Viability for Smaller Farms 
The economic viability of the 5G system for smaller 

farms hinges on its ability to reduce operational costs 
while boosting productivity. By leveraging network 
slicing, MEC, and IoT-enabled devices, smaller farms 
can adopt precision agriculture tools tailored to their 
needs without heavy upfront investments in hardware. 
For instance, shared drone services and scalable edge 
processing can reduce equipment costs. Additionally, 
savings on inputs like water and chemicals due to 
precise targeting, along with labor cost reductions 
through automation, offset the initial setup costs. Intent-
driven models, such as Network-as-a-Service, further 
enhance affordability, making advanced 5G 
technologies accessible even to small-scale farmers 
globally. 

7. CONCLUSIONS 
This applied research study introduced a scalable 

and innovative framework for integrating 5G-Advanced 
networks with AI-driven IoT technologies, tailored to 
address the challenges and demands of modern 
agriculture. The framework employs advanced 
methodologies, including 5G-drone chains for extended 
coverage, intent-based farming supported by network 
slicing, and the migration of computational workloads 
from user equipment to edge servers. By overcoming 
traditional barriers such as high implementation costs 
and limited scalability, the proposed approach 
leverages intelligent edge infrastructure to make 
precision agriculture accessible to farms of varying 
scales and capacities. 

By addressing challenges of latency, resource 
efficiency, and scalability, the framework demonstrates 
measurable benefits such as reduced water and 
chemical usage, enhanced crop yields, and significant 
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labor cost savings, making it economically viable even 
for smaller farms. Enhanced rural connectivity fosters 
real-time decision-making, traceability, and the 
adoption of sustainable supply-chain practices, directly 
aligning with United Nations Sustainable Development 
Goals (SDGs) related to food security, clean energy, 
climate action, and rural development. Quantifiable 
impacts include reductions in water usage, greenhouse 
gas emissions, pesticide application, and energy 
consumption, alongside advancements in carbon 
sequestration and CO₂ data collection. These 
achievements underscore the transformative potential 
of integrating 5G technologies and AI in agricultural 
operations. 

Although designed with agricultural applications in 
mind, the principles and methodologies of this 
framework are broadly applicable across industries 
seeking sustainable solutions through advanced 
technologies. Future research will focus on further 
refining these technologies for broader applications and 
expanding their implementation in real-world settings to 
promote food security and rural development 
worldwide. By advancing these goals, the framework 
sets the foundation for a more sustainable and efficient 
technological ecosystem across multiple sectors. 
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